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Radiological Challenges at the
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• Faculty equivalent staff: 110
• Professional staff: 162
• Associated faculty: 24
• Contract professionals: 5
• Graduate and undergraduate  
 students: 124



Successful radioactivity management requires a blend of 
training, situational awareness, and engineered systems 

•  Introduce the Laboratory for Laser Energetics (LLE) 

•  Describe Radiation Safety initiatives to address LLE needs 

•  Discuss engineered systems used at LLE 

•  Closing remarks 
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OMEGA EP Laser System
• Operating since mid-2008
• Adds four National Ignition Facility 

(NIF)-like beamlines; 6.5-kJ UV (10 ns)
• Two beams can be high-energy petawatt
  – 2.6-kJ IR in 10 ps
  – can propagate to the OMEGA 

or OMEGA EP target chamber 

OMEGA Laser System
• Operating at LLE since 1995
• Up to 1500 shots/year
• 60 beams
• >30-kJ UV on target
• Flexible pulse shaping
• Short shot cycle (1 h) 

More than half of OMEGA’s shots 
are for external users.

The Laboratory for Laser Energetics (LLE) operates 
two of the world’s largest lasers for high-energy-
density-physics research

G10425e
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LLE is exploring the possibility of installing a multi-MA 
pulsed-power machine coupled to OMEGA EP

I2186b

• This machine would fill the gap between the 1-MA university 
machines and the 25-MA Z machine

• The coupling of OMEGA EP will allow new physics platforms 
to be developed

– magnetized liner inertial fusion (MagLIF)
– Thomson scattering in warm dense matter
– novel bright x-ray sources
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• Neutrons
• Tritium
• X-ray

Source terms:



LLE has an infrastructure designed to fill and handle 
DT targets and contaminated equipment safely

E24654

• Site inventory limit: 15,000 Ci

• Hold gaseous emissions below NYS-DEC environmental limits (0.1 nCi/m3) 

    Tritium Facility:  4.0 Ci
    OMEGA:   2.2 Ci 
    Tritium Laboratory: 3.2 Ci

• Maintain airborne tritium concentrations:

    Radiological work areas: <20  nCi/m3 
    Uncontrolled areas:  <0.1 nCi/m3 

• Maintain exposed-surface contamination

– levels below 1000 dpm/100 cm2 in radiological work areas
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Cryogenic targets enable a greater 
mass of DT to be imploded

TC5701b
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Principal radiation sources at LLE

• DT fusion—prompt neutron radiation

– maximum credible yield shot of 3 × 1015 neutrons yield 516 rem  
at the surface of the OMEGA target chamber (radius = 1.6 m)

– maximum neutron yield on OMEGA EP is ~1012 neutrons

• Activated structures—short-term gamma radiation

– neutrons interact with OMEGA

– protons interact with film pack on OMEGA EP  

• Tritium—contaminate equipment

– surface contamination 

– airborne releases

• Fast-electron deceleration in high-Z materials in OMEGA EP—
prompt, high-energy x rays

long-term diffuse radiation



E17006e
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The aim of radiation protection is to reduce exposure to 
As Low As Reasonably Achievable: the ALARA principle

H = Dose rate × time
At LLE, time = number of target shots

Closed access during shots

Provide shielding
– energetic betas " aluminum, plastic
– x rays, c rays " lead, concrete
– neutrons " concrete, paraffin Surface activity (dpm/100 cm2)

400-mCi cryo
DT shot

1/100 monolayer/h
(each particle labeled with a T atom) 
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Implementing radiation safety effectively at LLE requires 
several approaches

E24655a

• Training

– annual recertification

– proficiency evaluation

• Procedures

– living documents

– referenced during the evolution

– no changes on the fly

• Monitoring

– thermoluminescent devices

– bioassays

– airborne activity/radiation fields

• Engineered safety systems
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After radiation safety, the overarching goal is to minimize 
the impact of tritium on nonradiological facilities

E24656

• Compartmentalization

– isolate processes

– tailor gloveboxes to suit the application

– secondary containment

• Staged commissioning

– D2 " trace DT " high-activity DT

• Minimize the chronic release of tritium

• Monitor all effluent streams and work spaces to get a better 
handle on tritium operations

– permits fine-tuning of the procedures

– reduces the number of surprises
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Tritium Fill Station (TFS) functions
 –  store tritium
 –  remove helium-3 from DT fuel
 –  remove residual tritium from process loop
 –  assay tritium
 –  permeation fill gas targets (<50 bar)
 –  provide fail-safe recovery of tritium
 –  transfer DT to a DTHPS* to fill cryo targets

Tritium is captured from each process
and inert containment stream with getters
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*DTHPS = DT high-pressure system



The getter-based Glovebox Cleanup System provides 
a robust platform against accidental releases

E13094b
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Cryogenic targets are formed by cooling DT gas  
at 1000 bar to 17 K in the Fill Transfer System (FTS)

G6548g
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High- and low-activity streams of air and inert 
gas are treated separately

E13091b
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DT gas-filled (warm) targets are transported 
to the TC in sealed plastic containers

E11597l
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Cryogenic targets are transferred to and held at target 
chamber center under vacuum and at 17 K until shot time

Tritium
Fill Station

Transfer cart

Target
chamber

Shroud
retractor

Scrubber

TC-TRS**
stack

TC-TRS

DTHPS

AirTRS

TRS* stack

Lower
pylon

16

 *TRS = Tritium Removal System
**TC-TRS = Target Chamber Tritium Removal System



The TC cryopumps collect ~75% of the DT fielded; 
the balance adsorbs on the TC wall as DTO

E13738d
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A 200-mCi (7.4-GBq) 
DT cryo target will 
deposit ~48 mCi (1.7 GBq) 
on the TC walls.
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Only 3% of the tritium collected 
by the cryopump is oxide

Room-temperature, moist air purges 
decontaminate the TC interior  
to negligible dose levels within  
2 h for gas targets and within  
4 h for DT cryo targets.



The TC-TRS is based on classical 
“burn-and-dry” technology

T2515c

• All tritiated air streams are sent 
to the TC-TRS
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• MCTC’s are decontaminated 
before maintenance to reduce 
outgassing and dose uptake 
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Each TIM* is purged with air before it is opened 
to prevent a “tritium puff”

T2513b

• Each TIM is decontaminated overnight following any DT campaign
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Chronic, low-level releases can be identified 
with a Stephenson diffusion cell

E24710
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Tritium throughput has increased 15-fold since 
2005, while emissions from the OMEGA stack 
have dropped twofold

E24652

• The OMEGA stack is permitted to discharge up to 2.2 Ci/year 
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Tritium throughput has increased fivefold since 
2005, while emissions from the Tritium Facility 
stack have dropped continuously

E24653

• The Tritium Facility stack is permitted to discharge up to 4 Ci/year 
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The OMEGA neutron shield is performing satisfactorily 

G6712b

Point 
no.

 
Location

Integrated dose1 
 (mrem)

Dose for max. 
cred. yield2 (mrem)

Shield design 
(mrem)

1 Experimental System Operator station <10 <10 7 

2 TB anteroom 318 42 21

3 Stairway opposite TB entrance 378 57 40

4 TB north emergency exit 119 2 <1

9 Room 134 damage test lab. north <10 <10 1

10 LaCave darkroom 10 2 <1

11 LaCave/Capacitor Bay wall <10 <10 <1

12 Control Room conference room 12 3 30

13 Rod amplifier room east wall <10 <10 40

14 Amplifier test and assembly area 20 5 27

15 Amplifier test and assembly area 20 5 20

16 Laser Bay north wall, center 70 16 36

17 LaCave below TC for type-6 shots <10 <10     <13

18 Laser Bay west wall 10 2 1

19 Laser Bay south wall, center 30 7 17

20 Laser Bay south wall, east 40 9 30

1  Dose for 1995 to 2015 for integrated neutron yield of 2.22 × 1016.
2  Extrapolated dose for maximum credible neutron yield of 3 × 1015 per shot.
3  Badge 17 was put in place to determine if there was any exposure risk from hard electrons when  
 the area below the target chamber was accessible. The result indicates that there is no risk. 
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Average low-energy neutron dose at various locations 
per 1014 neutrons produced in OMEGA

E24529
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Summary 

•  Engineered systems have been robust against emissions to 

the environment despite increased throughputs 

•  No reportable doses to radiation workers from tritium or 

activated materials 

•  Tritium contamination outside the radiological areas less than 

1000 DP/100 cm2 

•  Emissions from all stacks below 10% of the authorized New 

York State (NYS) Department of Environmental Conservation 

(DEC) – Part 380 discharge limit 




